Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Eur J Med Genet ; 66(7): 104754, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20242570

ABSTRACT

Phelan-McDermid syndrome (PMS) is an infrequently described syndrome that presents with a disturbed development, neurological and psychiatric characteristics, and sometimes other comorbidities. As part of the development of European medical guidelines we studied the definition, phenotype, genotype-phenotype characteristics, and natural history of the syndrome. The number of confirmed diagnoses of PMS in different European countries was also assessed and it could be concluded that PMS is underdiagnosed. The incidence of PMS in European countries is estimated to be at least 1 in 30,000. Next generation sequencing, including analysis of copy number variations, as first tier in diagnostics of individuals with intellectual disability will likely yield a larger number of individuals with PMS than presently known. A definition of PMS by its phenotype is at the present not possible, and therefore PMS-SHANK3 related is defined by the presence of SHANK3 haploinsufficiency, either by a deletion involving region 22q13.2-33 or a pathogenic/likely pathogenic variant in SHANK3. In summarizing the phenotype, we subdivided it into that of individuals with a 22q13 deletion and that of those with a pathogenic/likely pathogenic SHANK3 variant. The phenotype of individuals with PMS is variable, depending in part on the deletion size or whether only a variant of SHANK3 is present. The core phenotype in the domains development, neurology, and senses are similar in those with deletions and SHANK3 variants, but individuals with a SHANK3 variant more often are reported to have behavioural disorders and less often urogenital malformations and lymphedema. The behavioural disorders may, however, be a less outstanding feature in individuals with deletions accompanied by more severe intellectual disability. Data available on the natural history are limited. Results of clinical trials using IGF-1, intranasal insulin, and oxytocin are available, other trials are in progress. The present guidelines for PMS aim at offering tools to caregivers and families to provide optimal care to individuals with PMS.


Subject(s)
Chromosome Disorders , Intellectual Disability , Humans , DNA Copy Number Variations , Intellectual Disability/genetics , Intellectual Disability/complications , Nerve Tissue Proteins/genetics , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosome Disorders/pathology , Chromosome Deletion , Phenotype , Syndrome , Chromosomes, Human, Pair 22/genetics
2.
PLoS One ; 17(10): e0271850, 2022.
Article in English | MEDLINE | ID: covidwho-2089379

ABSTRACT

Remdesivir is a leading therapy in patients with moderate to severe coronavirus 2 (SARS-CoV-2) infection; the majority of whom are older individuals. Remdesivir is a nucleoside analog that incorporates into nascent viral RNA, inhibiting RNA-directed RNA polymerases, including that of SARS-CoV-2. Less is known about remdesivir's effects on mitochondria, particularly in older adults where mitochondria are known to be dysfunctional. Furthermore, its effect on age-induced mitochondrial mutations and copy number has not been previously studied. We hypothesized that remdesivir adversely affects mtDNA copy number and deletion mutation frequency in aged rodents. To test this hypothesis, 30-month-old male F333BNF1 rats were treated with remdesivir for three months. To determine if remdesivir adversely affects mtDNA, we measured copy number and mtDNA deletion frequency in rat hearts, kidneys, and skeletal muscles using digital PCR. We found no effects from three months of remdesivir treatment on mtDNA copy number or deletion mutation frequency in 33-month-old rats. These data support the notion that remdesivir does not compromise mtDNA quality or quantity at old age in mammals. Future work should focus on examining additional tissues such as brain and liver, and extend testing to human clinical samples.


Subject(s)
COVID-19 , DNA, Mitochondrial , Animals , Child, Preschool , Humans , Male , Rats , Adenosine Monophosphate/pharmacology , Alanine , DNA Copy Number Variations , DNA, Mitochondrial/genetics , DNA-Directed RNA Polymerases/genetics , Mammals/genetics , Mitochondria/genetics , Nucleosides , RNA, Viral , SARS-CoV-2 , Sequence Deletion
3.
Jpn J Infect Dis ; 75(5): 504-510, 2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2040400

ABSTRACT

Factors associated with mortality are important in the treatment of coronavirus disease 2019 (COVID-19). Polymerase chain reaction (PCR) is the gold standard for diagnosing COVID-19, which reflects the viral load in the upper respiratory tract. In total, 523 patients were enrolled in this study; of them, 441 and 75 patients underwent PCR testing of nasopharyngeal swabs and sputum samples, respectively, within 20 days from onset of COVID-19. We investigated the association between RNA copy number and the COVID-19 severity and mortality rate and its effect on the predictive performance for severity and mortality. RNA copy numbers in nasopharyngeal swabs were higher in the non-survivor group than in the survivor group. Multivariate logistic regression analysis identified that the high RNA copy number (≥9 log10 /swab) in nasopharyngeal swabs was a factor associated with mortality (odds ratio, 4.50; 95% confidence interval, 1.510-13.100; P = 0.008). Furthermore, adding RNA copy number (≥9 log10 /swab) in severe cases, adjusted by duration from onset to PCR, improved mortality predictive performance based on known factors. The RNA copy number is a factor associated with the mortality of patients with COVID-19 and can improve the predictive performance of mortality in severe cases.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , DNA Copy Number Variations , Humans , Nasopharynx , RNA, Viral/genetics , SARS-CoV-2/genetics
4.
J Intellect Disabil Res ; 66(4): 313-322, 2022 04.
Article in English | MEDLINE | ID: covidwho-1699726

ABSTRACT

BACKGROUND: The world has suffered immeasurably during the COVID-19 pandemic. Increased distress and mental and medical health concerns are collateral consequences to the disease itself. The Genes to Mental Health (G2MH) Network consortium sought to understand how individuals affected by the rare copy number variations of 22q11.2 deletion and duplication syndrome, associated with neurodevelopmental/neuropsychiatric conditions, were coping. The article focuses on worry and disruptions in medical care caused by the pandemic. METHODS: The University of Pennsylvania COVID-19 Stressor List and care disruption questions were circulated by 22 advocacy groups in English and 11 other languages. RESULTS: A total of 512 people from 23 countries completed the survey; most were caregivers of affected individuals. Worry about family members acquiring COVID-19 had the highest average endorsed worry, whilst currently having COVID-19 had the lowest rated worry. Total COVID-19 worries were higher in individuals completing the survey towards the end of the study (later pandemic wave); 36% (n = 186) of the sample reported a significant effect on health due to care interruption during the pandemic; 44% of individuals (n = 111) receiving care for their genetic syndrome in a hospital setting reported delaying appointments due to COVID-19 fears; 12% (n = 59) of the sample reported disruptions to treatments; and of those reporting no current disruptions, 59% (n = 269) worried about future disruptions if the pandemic continued. Higher levels of care disruptions were related to higher COVID-19 worries (Ps < 0.005). Minimal differences by respondent type or copy number variation type emerged. CONCLUSIONS: Widespread medical care disruptions and pandemic-related worries were reported by individuals with 22q11.2 syndrome and their family members. Reported worries were broadly consistent with research results from prior reports in the general population. The long-term effects of COVID-19 worries, interruptions to care and hospital avoidance require further study.


Subject(s)
COVID-19 , DNA Copy Number Variations , Caregivers , Chromosomes , Humans , Pandemics
5.
Genes (Basel) ; 12(12)2021 11 30.
Article in English | MEDLINE | ID: covidwho-1596962

ABSTRACT

Copy number variants (CNVs) provide numerous genetic differences between individuals, and they have been linked with multiple human diseases. Obesity is one of the highly heritable complex disorders, which is associated with copy number variance (CNV). A recent report shows that the 11q11 gene, a novel olfactory receptor, and its copy number variants are involved in the early onset of obesity. In the current study, we analyzed the 11q11 gene copy number variance (CNV) based on gender in White/European American (EA) and African American (AA) normal weight and overweight/obese children. Sixty-nine boys and fifty-eight girls between the ages of 6 and 10 years belonging to either EA or AA ethnicity were involved in this study. As per World Health Organization (WHO) guidelines, each participant's body weight and height were recorded. DNA was extracted from saliva, and the copy number variants for the 11q11 gene were measured using digital PCR. The descriptive analysis of the 11q11 copy number showed significantly more copies in girls compared to boys; similarly, AA participants had significantly increased CNV compared to EA. The normal weight (NW) and overweight/obese (OW/OB) girls were significantly less likely to belong to the low copy number variant (LCNV) group of 11q11 compared to boys; similarly, NW and OW/OB AA children were significantly less likely to belong to the LCNV group. The AA girls in LCNV had significantly higher BMI z-scores. Our findings suggest that the 11q11 copy number in children is race and gender-specific.


Subject(s)
Black or African American/genetics , Body Weight/genetics , Chromosomes, Human, Pair 11 , Pediatric Obesity/genetics , Child , DNA Copy Number Variations , Female , Humans , Male , Receptors, Odorant/genetics , Saliva , Sex Characteristics , White People/genetics
6.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: covidwho-1409701

ABSTRACT

Takotsubo syndrome (TTS), recognized as stress's cardiomyopathy, or as left ventricular apical balloon syndrome in recent years, is a rare pathology, described for the first time by Japanese researchers in 1990. TTS is characterized by an interindividual heterogeneity in onset and progression, and by strong predominance in postmenopausal women. The clear causes of these TTS features are uncertain, given the limited understanding of this intriguing syndrome until now. However, the increasing frequency of TTS cases in recent years, and particularly correlated to the SARS-CoV-2 pandemic, leads us to the imperative necessity both of a complete knowledge of TTS pathophysiology for identifying biomarkers facilitating its management, and of targets for specific and effective treatments. The suspect of a genetic basis in TTS pathogenesis has been evidenced. Accordingly, familial forms of TTS have been described. However, a systematic and comprehensive characterization of the genetic or epigenetic factors significantly associated with TTS is lacking. Thus, we here conducted a systematic review of the literature before June 2021, to contribute to the identification of potential genetic and epigenetic factors associated with TTS. Interesting data were evidenced, but few in number and with diverse limitations. Consequently, we concluded that further work is needed to address the gaps discussed, and clear evidence may arrive by using multi-omics investigations.


Subject(s)
COVID-19/complications , Epigenesis, Genetic/immunology , Genetic Heterogeneity , Genetic Predisposition to Disease , Takotsubo Cardiomyopathy/genetics , Biomarkers/analysis , COVID-19/immunology , COVID-19/virology , DNA Copy Number Variations/immunology , Genetic Loci/immunology , Heart Ventricles/immunology , Heart Ventricles/pathology , Humans , Medical History Taking , Polymorphism, Single Nucleotide/immunology , SARS-CoV-2/immunology , Takotsubo Cardiomyopathy/diagnosis , Takotsubo Cardiomyopathy/immunology , Takotsubo Cardiomyopathy/pathology
7.
Mol Diagn Ther ; 25(5): 607-615, 2021 09.
Article in English | MEDLINE | ID: covidwho-1404688

ABSTRACT

INTRODUCTION: It has been proposed that the copy number (CN) variation (CNV) in ß-defensin genes (DEFB) on human chromosome 8p23 determines phenotypic differences in inflammatory diseases. However, no method for accurate and easy DEFB CN quantification is yet available. OBJECTIVE: Droplet digital polymerase chain reaction (ddPCR) is a novel method for CNV quantification and has been used for genes such as CCL4L, CCL3L1, AMY1, and HER2. However, to date, no ddPCR assay has been available for DEFB CN determination. In the present study, we aimed to develop and evaluate such a ddPCR assay. METHODS: The assay was designed using DEFB4 and RPP30 as the target and the reference gene, respectively. To evaluate the assay, 283 DNA samples with known CNs previously determined using the multiple ligation-dependent probe amplification (MLPA) method, the current gold standard, were used as standards. To discover the optimal DNA template amount, we tested 80 to 2.5 ng DNA by a serial of one to two dilutions of eight samples. To evaluate the reproducibility of the assay, 31 samples were repeated to calculate the intra- and inter-assay variations. To further validate the reliability of the assay, the CNs of all 283 samples were determined using ddPCR. To compare results with those using quantitative PCR (qPCR), DEFB CNs for 48 samples were determined using qPCR with the same primers and probes. RESULTS: In a one-dimensional plot, the positive and negative droplets were clearly separated in both DEFB4 and RPP30 detection channels. In a two-dimensional plot, four populations of droplets were observed. The 20 ng template DNA proved optimal, with either high (80 ng) or low (10, 5, 2.5 ng) template input leading to ambiguous or inaccurate results. For the 31 standard samples, DEFB CNs were accurately determined with small intra- and inter-assay variations (coefficient of variation < 0.04 for both). In the validation cohort, ddPCR provided the correct CN for all 283 samples with high confidence. qPCR measurements for the 48 samples produced noisy data with high uncertainty and low accuracy. CONCLUSIONS: ddPCR is an accurate, reproducible, easy-to-use, cheap, high-throughput method for DEFB CN determination. ddPCR could be applied to DEFB CN quantification in large-scale case-control studies.


Subject(s)
beta-Defensins , DNA Copy Number Variations , DNA Primers , Humans , Real-Time Polymerase Chain Reaction , Reproducibility of Results , beta-Defensins/genetics
8.
Life Sci ; 258: 118170, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-680463

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19), which is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is a major health concern worldwide. Due to the lack of specific medication and vaccination, drug-repurposing attempts has emerged as a promising approach and identified several human proteins interacting with the virus. This study aims to provide a comprehensive molecular profiling of the immune cell-enriched SARS-CoV-2 interacting protein USP13. MATERIALS AND METHODS: The list of immune cell-enriched proteins interacting with SARS-CoV-2 was retrieved from The Human Protein Atlas. Genomic alterations were identified using cBioPortal. Survival analysis was performed via Kaplan-Meier Plotter. Analyses of protein expression and tumor infiltration levels were carried out by TIMER. KEY FINDINGS: 14 human proteins that interact with SARS-CoV-2 were enriched in immune cells. Among these proteins, USP13 had the highest frequency of genomic alterations. Higher USP13 levels were correlated with improved survival in breast and lung cancers, while resulting in poor prognosis in ovarian and gastric cancers. Furthermore, copy number variations of USP13 significantly affected the infiltration levels of distinct subtypes of immune cells in head & neck, lung, ovarian and stomach cancers. Although our results suggested a tumor suppressor role for USP13 in lung cancer, in other cancers, its role seemed to be context-dependent. SIGNIFICANCE: It is critical to identify and characterize human proteins that interact with SARS-CoV-2 in order to have a better understanding of the disease and to develop better therapies/vaccines. Here, we provided a comprehensive molecular profiling the immune cell-enriched SARS-CoV-2 interacting protein USP13, which will be useful for future studies.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Endopeptidases/immunology , Leukocytes/immunology , Neoplasms/immunology , Pneumonia, Viral/immunology , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/genetics , Coronavirus Infections/virology , DNA Copy Number Variations , Databases, Protein , Endopeptidases/genetics , Humans , Leukocytes/virology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/virology , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/virology , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , Prognosis , SARS-CoV-2 , Ubiquitin-Specific Proteases
SELECTION OF CITATIONS
SEARCH DETAIL